Copied to
clipboard

G = C9×C22⋊C4order 144 = 24·32

Direct product of C9 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C9×C22⋊C4, C222C36, C18.12D4, C23.2C18, (C2×C36)⋊2C2, (C2×C18)⋊1C4, (C2×C4)⋊1C18, C2.1(D4×C9), C2.1(C2×C36), (C2×C12).1C6, (C2×C6).2C12, C6.12(C3×D4), C6.10(C2×C12), C18.10(C2×C4), (C22×C6).5C6, C22.2(C2×C18), (C22×C18).1C2, (C2×C18).13C22, C3.(C3×C22⋊C4), (C3×C22⋊C4).C3, (C2×C6).16(C2×C6), (C2×C18)(C3×C22⋊C4), SmallGroup(144,21)

Series: Derived Chief Lower central Upper central

C1C2 — C9×C22⋊C4
C1C3C6C2×C6C2×C18C2×C36 — C9×C22⋊C4
C1C2 — C9×C22⋊C4
C1C2×C18 — C9×C22⋊C4

Generators and relations for C9×C22⋊C4
 G = < a,b,c,d | a9=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C22
2C22
2C4
2C4
2C6
2C6
2C2×C6
2C12
2C2×C6
2C12
2C18
2C18
2C36
2C2×C18
2C36
2C2×C18

Smallest permutation representation of C9×C22⋊C4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 37)(7 38)(8 39)(9 40)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 19)(17 20)(18 21)(28 50)(29 51)(30 52)(31 53)(32 54)(33 46)(34 47)(35 48)(36 49)(55 68)(56 69)(57 70)(58 71)(59 72)(60 64)(61 65)(62 66)(63 67)
(1 34)(2 35)(3 36)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 62)(11 63)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 61)(19 72)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(37 52)(38 53)(39 54)(40 46)(41 47)(42 48)(43 49)(44 50)(45 51)
(1 70 41 14)(2 71 42 15)(3 72 43 16)(4 64 44 17)(5 65 45 18)(6 66 37 10)(7 67 38 11)(8 68 39 12)(9 69 40 13)(19 49 59 36)(20 50 60 28)(21 51 61 29)(22 52 62 30)(23 53 63 31)(24 54 55 32)(25 46 56 33)(26 47 57 34)(27 48 58 35)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(28,50)(29,51)(30,52)(31,53)(32,54)(33,46)(34,47)(35,48)(36,49)(55,68)(56,69)(57,70)(58,71)(59,72)(60,64)(61,65)(62,66)(63,67), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,62)(11,63)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,72)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51), (1,70,41,14)(2,71,42,15)(3,72,43,16)(4,64,44,17)(5,65,45,18)(6,66,37,10)(7,67,38,11)(8,68,39,12)(9,69,40,13)(19,49,59,36)(20,50,60,28)(21,51,61,29)(22,52,62,30)(23,53,63,31)(24,54,55,32)(25,46,56,33)(26,47,57,34)(27,48,58,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(28,50)(29,51)(30,52)(31,53)(32,54)(33,46)(34,47)(35,48)(36,49)(55,68)(56,69)(57,70)(58,71)(59,72)(60,64)(61,65)(62,66)(63,67), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,62)(11,63)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,72)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51), (1,70,41,14)(2,71,42,15)(3,72,43,16)(4,64,44,17)(5,65,45,18)(6,66,37,10)(7,67,38,11)(8,68,39,12)(9,69,40,13)(19,49,59,36)(20,50,60,28)(21,51,61,29)(22,52,62,30)(23,53,63,31)(24,54,55,32)(25,46,56,33)(26,47,57,34)(27,48,58,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,37),(7,38),(8,39),(9,40),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,19),(17,20),(18,21),(28,50),(29,51),(30,52),(31,53),(32,54),(33,46),(34,47),(35,48),(36,49),(55,68),(56,69),(57,70),(58,71),(59,72),(60,64),(61,65),(62,66),(63,67)], [(1,34),(2,35),(3,36),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,62),(11,63),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,61),(19,72),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(37,52),(38,53),(39,54),(40,46),(41,47),(42,48),(43,49),(44,50),(45,51)], [(1,70,41,14),(2,71,42,15),(3,72,43,16),(4,64,44,17),(5,65,45,18),(6,66,37,10),(7,67,38,11),(8,68,39,12),(9,69,40,13),(19,49,59,36),(20,50,60,28),(21,51,61,29),(22,52,62,30),(23,53,63,31),(24,54,55,32),(25,46,56,33),(26,47,57,34),(27,48,58,35)]])

C9×C22⋊C4 is a maximal subgroup of
C22.D36  C23.16D18  C222Dic18  C23.8D18  Dic94D4  C223D36  C23.9D18  D18⋊D4  Dic9.D4  C22.4D36  D4×C36

90 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D6A···6F6G6H6I6J9A···9F12A···12H18A···18R18S···18AD36A···36X
order1222223344446···666669···912···1218···1818···1836···36
size1111221122221···122221···12···21···12···22···2

90 irreducible representations

dim111111111111222
type++++
imageC1C2C2C3C4C6C6C9C12C18C18C36D4C3×D4D4×C9
kernelC9×C22⋊C4C2×C36C22×C18C3×C22⋊C4C2×C18C2×C12C22×C6C22⋊C4C2×C6C2×C4C23C22C18C6C2
# reps121244268126242412

Matrix representation of C9×C22⋊C4 in GL4(𝔽37) generated by

7000
0100
00100
00010
,
36000
0100
0010
002236
,
1000
0100
00360
00036
,
1000
03100
00152
003622
G:=sub<GL(4,GF(37))| [7,0,0,0,0,1,0,0,0,0,10,0,0,0,0,10],[36,0,0,0,0,1,0,0,0,0,1,22,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,31,0,0,0,0,15,36,0,0,2,22] >;

C9×C22⋊C4 in GAP, Magma, Sage, TeX

C_9\times C_2^2\rtimes C_4
% in TeX

G:=Group("C9xC2^2:C4");
// GroupNames label

G:=SmallGroup(144,21);
// by ID

G=gap.SmallGroup(144,21);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,144,169,230]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C9×C22⋊C4 in TeX

׿
×
𝔽